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Secure distributed systems rely on trust

  Specifies the failures that a system
can tolerate.

  Determines the conditions under
which a system operates correctly.

  Defined through a fail-prone
system.

  Fail-prone systems are useful tools
for the design of distributed
algorithms. 
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Permissioned systems

  P = {p1, ..., pn}.

  Full system membership is public knowledge.

  Trust assumptions are public knowledge.

  Participants do not lie about their trust assumptions.



  4

Generalized trust
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Byzantine quorum systems

  Set of processes P = {p1, ..., pn}. 

 
  Fail-prone system F ⊆ 2P : all processes in some F ∈ F may fail together. 

  Quorum system Q ⊆ 2P , where any Q ∈ Q  is a quorum, if and only if:

–  Consistency:
∀ Q1, Q2 ∈ Q, ∀ F ∈ F : Q1 ∩ Q2 ⊈ F.

–  Availability: 
∀ F ∈ F : ∃ Q ∈ Q : F ∩ Q = ∅.

[Malkhi & Reiter, 1998]
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Asymmetric trust
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Asymmetric Byzantine quorum systems

  Set of processes P = {p1, ..., pn}. 

 
  Fail-prone systems Fi ⊆ 2P for pi.

  Quorum systems Qi ⊆ 2P , where any Qi ∈ Qi  is a quorum for pi ,if and only if:

–  Consistency:
∀ Qi ∈ Qi, ∀ Qj ∈ Qj, ∀ Fij ∈ Fi*∩ Fj*: Qi ∩ Qj ⊈ Fij.

–  Availability: 
∀ Fi ∈ Fi : ∃ Qi ∈ Qi : Fi ∩ Qi = ∅.

[Cachin & Tackmann, 2019]
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In the asymmetric trust model

  Faulty: A process pi  ∈ F is called faulty

  Naive: A correct process pi for which F ∉ Fi* is called naive

  Wise: A correct process for which F ∈ Fi* is called wise
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} G
Guild
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  Better understanding of the relationship between wise and naive
processes.

  Uniqueness of the guild in an execution.

  Importance of a guild in kernel-based protocols, e.g., Bracha
broadcast.

  Tolerated system

  Composition rule among asymmetric-trust based systems.

Some of our results

T= {P \ G, for any possible guild G }  
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Find a (deterministic) composition rule
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[ F1,F2,F3,F4,F5,F6,F7,F8,F9 ]
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First asynchronous Byzantine consensus
protocol with asymmetric trust

  It uses randomization
  Signature-free
  Round-based
  Suitable for applications in blockchain networks
  Builds on the protocol by Mostéfaoui et al. (PODC 2014)
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i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) 

The (original) protocol
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i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) →  bv-deliver(b) 
                                     2f+1                                                      

The (original) protocol
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i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) →  bv-deliver(b) → [AUX,b] to all 
                                     2f+1                                                      

The (original) protocol
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i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) →  bv-deliver(b) → [AUX,b] to all → b received  
                                     2f+1                                                     2f+1 

The (original) protocol
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i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) →  bv-deliver(b) → [AUX,b] to all → b received → release-coin 
                                     2f+1                                                     2f+1 

The (original) protocol



  18

i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) →  bv-deliver(b) → [AUX,b] to all → b received → release-coin → output-coin(s)  
                                     2f+1                                                     2f+1 

The (original) protocol
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i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) →  bv-deliver(b) → [AUX,b] to all → b received → release-coin → output-coin(s) → if b = s, rbc-decide(b)   
                                     2f+1                                                     2f+1                                                                  if b ≠ s, bv-broadcast(b)
                                                                                                                                                              if {0,1},  bv-broadcast(s)

The (original) protocol

B
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Liveness issue!

The network reorders messages between correct processes and delays them
until the coin value becomes known.
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Fixing the problem

i.  FIFO ordering on the reliable point-to-point links, including the messages
exchanged by the coin implementation 

 the adversary may no longer exploit its knowledge of the coin value to
prevent termination.

ii.  Allow the set B to dynamically change while the coin protocol executes.

iii. Our protocol does not execute rounds forever, as in the original formulation.
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The (asymmetric) protocol

i.Asymmetric binary validated broadcast
ii.Asymmetric randomized consensus

– Uses an asymmetric common coin

abv-broadcast(b) →  abv-deliver(b) → [AUX,b] to all → b received → release-coin → output-coin(s) → if b = s, arbc-decide(b) 

                                         Qi                                               Qi
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Asymmetric strong Byzantine consensus
In all executions with a guild:
   

  [Probabilistic termination] Every wise process decides with probability 1.

  [Strong validity] A wise process only decides a value that has been
proposed by some processes in the maximal guild.

  [Integrity] No correct process decides twice.

  [Agreement] No two wise processes decide differently. 
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Permissionless systems

  P = {p1, p2 ,...}.

  Knowledge of the full system membership ﻿is not available.

  Trust assumptions are (partially) public knowledge.

  Participants can lie about their trust assumptions.
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  Each process pi makes assumptions about a set Pi ⊆ P = {p1, p2 ,...} 
called pi's trusted set, using a fail-prone system Fi over Pi .

  Point-to-point communication & best-effort gossip primitive.

  Each process pi continuously discovers new processes and learns
their assumptions.

  A permissionless fail-prone system is an array:

  F = [(P1 ,F1),(P2 ,F2),..., ]

Our model
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We say that the assumptions of a process pi are satisfied in an execution if the set
A of processes that fail is such that there exists a fail-prone set F ∈ Fi such that:

i. A ∩ Pi ⊆ F; 
              

ii.the assumptions of every member of Pi \ F are satisfied.

Assumptions of pi 
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We say that the assumptions of a process pi are satisfied in an execution if the set
A of processes that fail is such that there exists a fail-prone set F ∈ Fi such that:

i. A ∩ Pi ⊆ F; 
              

ii.the assumptions of every member of Pi \ F are satisfied.

If pi has its assumptions satisfied in an execution, we say that pi tolerates the
execution.

A set of processes L tolerates a set of processes A if and only if every process pi 
in L \ A tolerates an execution with set of faulty processes A. 

Assumptions of pi 
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A new kind of failure assumptions

A participant's assumption are not only about failures, but also about whether other
participants make correct assumptions.
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A new kind of failure assumptions

A participant's assumption are not only about failures, but also about whether other
participants make correct assumptions.

How do we define quorums?

  Global intersection property among quorums?

  Malicious processes can lie about their assumptions.
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Views

A view V = [V1,V2, ... ] is an array with one entry V[j] = Vj for each process pi such

that:

i. either Vj is the special value ┴ ; or 
ii. Vj = (Pj ,Fj) consists of a set of processes Pj and a fail-prone system Fj.

A process pi 's view is what pi thinks other's assumptions are. However, such view
might contain lies from Byzantine processes.
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Views

A view V = [V1,V2, ... ] is an array with one entry V[j] = Vj for each process pi such

that:

i. either Vj is the special value ┴ ; or 
ii. Vj = (Pj ,Fj) consists of a set of processes Pj and a fail-prone system Fj.

A process pi 's view is what pi thinks other's assumptions are. However, such view
might contain lies from Byzantine processes.

Given a set of faulty processes A in an execution, we say that a view V is 

A-resilient if and only if for every process pi ∉ A, either V[i] = ┴ or V[i] = F[i].  
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Quorum function

A quorum is a set of processes that satisfies the assumptions of every one of its
members.
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Quorum function

A quorum is a set of processes that satisfies the assumptions of every one of its
members.

The quorum function Q  : P x V ->  2P maps a process pi and a view V to a set of

processes such that Q ∈ Q  (pi , V) if and only if:  

 
i. there exists F ∈ Fi for pi such that Pi \ F ⊆ Q;
ii.for every process pj ≠ pi  ∈ Q with V[i] ≠ ┴ and Vj = (Pj ,Fj), there exists F ∈ Fj 

for pj such that Pj \ F ⊆ Q.

Every element of Q ∈ Q  (pi , V) is called a permissionless quorum for pi. 
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Leagues

A league is a set of processes that enjoys quorum intersection and quorum
availability in all executions that it tolerates.
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Leagues

A league is a set of processes that enjoys quorum intersection and quorum
availability in all executions that it tolerates.

A set of processes L is a league for the quorum function Q  if and only if:

   
i.  Consistency: for every set A ⊆ P tolerated by L, for every two A-resilient

views V and V', for every two processes pi and pj ∈ L \ A, and for every

two quorums Qi ∈ Q  (pi , V) and Qj ∈ Q  (pi , V') it holds (Qi ∩ Qj) \  A ≠ ∅;
   

ii. Availability: for every set A ⊆ P  tolerated by L and for every process pi ∈ 

L \ A, there exists a quorum Qi ∈ Q  (pi , F) such that Qi ⊆ L \ A.
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Permissionless Byz. reliable broadcast
For every league L and every execution tolerated by L:
   

• [Validity] If a correct process ps broadcasts a value v, the all correct
processes in L eventually deliver v.

• [Integrity] For any value v, every correct process delivers v at most once.
Moreover, if the sender ps is correct and the receiver is correct and in L, then
v was previously broadcast by ps.

• [Consistency] If a correct process in L delivers some value v and another
correct process in L delivers some value v', then v = v'.

• [Totality] If a correct process in L delivers some value v, then all correct
processes in L eventually deliver some value. 
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  Asymmetric threshold cryptography.

  Asymmetric leader-based consensus protocols.

  More composition rules.

  Byzantine consensus protocols in the permissionless setting. 

Open questions



  38

Thank you! 
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Asymmetric common coin
A protocol for asymmetric common coin satisfies the following properties:
   

• [Termination] In all the executions with a guild, every process in the maximal
guild eventually outputs a coin value.

• [Unpredictability] In all the executions with a guild, no process has any
information about the value of the coin before at least a kernel for all wise
processes, which consists of correct processes, has released the coin.

• [Matching] In all the executions with a guild, with probability 1 every process
in the maximal guild outputs the same coin value.

• [No bias] The distribution of the coin is uniform over {0,1}.
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2f+1
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Random coin = 0
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Random coin = 0
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AUX, 0 ...

B = {0,1}


