UNIVERSITAT

Asymmetric Trust in
Distributed Systems

Luca Zanolini
University of Bern

Supervisor: Prof. Dr. Christian Cachin

6" July 2023

Secure distributed systems rely on trust

UNIVERSITAT

¢ Specifies the failures that a system
can tolerate.

¢ Determines the conditions under
which a system operates correctly.

¢ Defined through a fail-prone
system.

¢ Fail-prone systems are useful tools
for the design of distributed -
algorithms.

Permissioned systems

UNIVERSITAT

o P={p1, ..., pn}-
¢ Full system membership is public knowledge.
¢ Trust assumptions are public knowledge.

¢ Participants do not lie about their trust assumptions.

Generalized trust

Byzantine quorum systems

UNIVERSITAT

o Set of processes P = {p1, ..., pn}-

+ Fail-prone system F < 2P : all processes in some F € F may fail together.
¢ Quorum system Q < 2P , where any Q € Q is a quorum, if and only if:
— Consistency:
VQ,QQeQVFeF: Qi NQyZF.
— Availability:
VFeF:3QeQ:FNnQ=4.

[Malkhi & Reiter, 1998]

Asymmetric trust

F1 F2 I:4

Asymmetric Byzantine quorum systems

UNIVERSITAT

o Set of processes P = {p1, ..., pn}-
o Fail-prone systems F; = 2P for p.
¢ Quorum systems Q; < 2P |, where any Q; € Q; is a quorum for p; ,if and only if:
— Consistency:
V QeQ,V Qj S Qj, \v/ Fij e Fi*n Fj*Z Qi N Qj A Fij-
— Availability:
VFeF:3QeQ:FinQ=4.

[Cachin & Tackmann, 2019]

In the asymmetric trust model

UNIVERSITAT

& Faulty: A process p; € F is called faulty
¢ Naive: A correct process p; for which F & F;* is called naive

¢ Wise: A correct process for which F € F;* is called wise

s

10!

<
@

- 3 -

Guild

Some of our results

¢ Better understanding of the relationship between wise and naive
processes.

¢ Uniqueness of the guild in an execution.

¢ Importance of a guild in kernel-based protocols, e.g., Bracha
broadcast.

& Tolerated system T= [P \G, for any possible guild G }

¢ Composition rule among asymmetric-trust based systems.

UNIVERSITAT

10

Find a (deterministic) composition rule

UNIVERSITAT

e

\ [F1,F2,F3,F4,F5Fe,F7,FgFo) /

First asynchronous Byzantine consensus
protocol with asymmetric trust

¢ |t uses randomization

¢ Signature-free

¢ Round-based

¢ Suitable for applications in blockchain networks

¢ Builds on the protocol by Mostéfaoui et al. (PODC 2014)

Signature-Free Asynchronous Byzantine Consensus
with ¢ < n/3 and O(»?) Messages

Achour Mostéfaoui Hamouma Moumen Michel Raynal

LINA, Université de Nantes University of Bejaia Institut Universitaire de France
44322 Nantes, France Bejaia, Algeria & IRISA, Université de Rennes
Achour.Mostefaoui@univ- moumenh@gmail.com raynal@irisa.fr
nantes.fr

UNIVERSITAT

12

The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b)

UNIVERSITAT

13

The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b)
2f+1

UNIVERSITAT

14

The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all
2f+1

UNIVERSITAT

15

The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all — b received
2f+1 2f+1

UNIVERSITAT

16

The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all — b received — release-coin
2f+1 2f+1

UNIVERSITAT

17

The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all — b received — release-coin — output-coin(s)
2f+1 2f+1

UNIVERSITAT

18

The (original) protocol

UNIVERSITAT

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all — b received — release-coin — output-coin(s) — if b = s, rbc-decide(b)
2f+1 2f+1 if b # s, bv-broadcast(b)
if {0,1}, bv-broadcast(s)

A

B
19

UNIVERSITAT

Liveness issue!

The network reorders messages between correct processes and delays them
until the coin value becomes known.

20

Fixing the problem

UNIVERSITAT

i. FIFO ordering on the reliable point-to-point links, including the messages
exchanged by the coin implementation

+ the adversary may no longer exploit its knowledge of the coin value to
prevent termination.

ii. Allow the set B to dynamically change while the coin protocol executes.

iii. Our protocol does not execute rounds forever, as in the original formulation.

21

The (asymmetric) protocol

UNIVERSITAT

I.LAsymmetric binary validated broadcast

. Asymmetric randomized consensus
— Uses an asymmetric common coin

abv-broadcast(b) — abv-deliver(b) — [AUX,b] to all — b received — release-coin — output-coin(s) — if b = s, arbc-decide(b)

Q,‘ Qi

22

Asymmetric strong Byzantine consensus

UNIVERSITAT

In all executions with a guild:

¢ [Probabilistic termination] Every wise process decides with probability 1.

¢ [Strong validity] A wise process only decides a value that has been
proposed by some processes in the maximal guild.

¢ [Integrity] No correct process decides twice.

¢ [Agreement] No two wise processes decide differently.

23

Permissionless systems

¢ P-= {p1, P2 ,}
¢ Knowledge of the full system membership is not available.
¢ Trust assumptions are (partially) public knowledge.

< Participants can lie about their trust assumptions.

UNIVERSITAT

24

Our model

¢ Each process p; makes assumptions about a set Pi < P = {p1, p2,...}
called p;i's trusted set, using a fail-prone system F; over P; .

¢ Point-to-point communication & best-effort gossip primitive.

¢ Each process p; continuously discovers new processes and learns
their assumptions.

¢ A permissionless fail-prone system is an array:

F=[(P1 F1),(P2 F2),...,]

UNIVERSITAT

25

Assumptions of p;

UNIVERSITAT

We say that the assumptions of a process p; are satisfied in an execution if the set
A of processes that fail is such that there exists a fail-prone set F € F; such that:

i.ANP;c F;

ii.the assumptions of every member of P;\ F are satisfied.

26

Assumptions of p; —

We say that the assumptions of a process p; are satisfied in an execution if the set
A of processes that fail is such that there exists a fail-prone set F € F; such that:

i.ANP;c F;
ii.the assumptions of every member of P;\ F are satisfied.

If p; has its assumptions satisfied in an execution, we say that p; tolerates the
execution.

A set of processes L tolerates a set of processes A if and only if every process p;

in L \ A tolerates an execution with set of faulty processes A.
27

A new Kkind of failure assumptions

UNIVERSITAT

A participant's assumption are not only about failures, but also about whether other
participants make correct assumptions.

28

A new Kkind of failure assumptions

UNIVERSITAT

A participant's assumption are not only about failures, but also about whether other
participants make correct assumptions.

How do we define quorums??

¢ Global intersection property among quorums?

¢ Malicious processes can lie about their assumptions.

29

Views

A view V = [V4,V3, ... | is an array with one entry V[j] = V; for each procengE)i such
that:

i. either V; is the special value - ; or
ii. Vj = (Pj F;) consists of a set of processes Pj and a fail-prone system F;.

A process p; 's view is what pj thinks other's assumptions are. However, such view
might contain lies from Byzantine processes.

30

Views

A view V = [V4,V3, ... | is an array with one entry V[j] = V; for each procengE)i such
that:

i. either V; is the special value - ; or
ii. Vj = (Pj F;) consists of a set of processes Pj and a fail-prone system F;.

A process p; 's view is what pj thinks other's assumptions are. However, such view
might contain lies from Byzantine processes.

Given a set of faulty processes A in an execution, we say that a view V is
A-resilient if and only if for every process p; & A, either V[i] = - or V[i] = Fil.

31

b

Quorum function u

b
UNIVERSITAT

A quorum is a set of processes that satisfies the assumptions of every onechJf its
members.

32

Quorum function

UNIVERSITAT

A quorum is a set of processes that satisfies the assumptions of every onem;)f its
members.

The quorum function Q : P x V -> 2P maps a process p;and a view V to a set of
processes such that Q € Q (pj V) if and only if:

i. there exists F € F;for pjsuchthat P\ F < Q;
ii.for every process p; # pj € Q with V[i] # L and Vj = (Pj Fj), there exists F € F;
for pjsuch that P\ F < Q.

Every elementof Q € Q (p;, V) is called a permissionless quorum for p;.

33

b

Leagues u

b
UNIVERSITAT

A league is a set of processes that enjoys quorum intersection and quorw;;m
availability in all executions that it tolerates.

34

Leagues

UNIVERSITAT

A league is a set of processes that enjoys quorum intersection and quorunB;RN
availability in all executions that it tolerates.

A set of processes L is a league for the quorum function Q if and only if:

i. Consistency: for every set A € P tolerated by L, for every two A-resilient
views V and V', for every two processes p; and p; € L \ A, and for every

two quorums Q; € Q (p;, V) and Qj € Q (pi V') itholds (Qj N Qj) \ A# O

ii. Availability: for every set A = P tolerated by L and for every process p; €
L \ A, there exists a quorum Q; € Q (pj F) suchthat Q; = L\A.

35

Permissionless Byz. reliable broadcast

For every league L and every execution tolerated by L:

- [Validity] If a correct process pg broadcasts a value v, the all correct
processes in L eventually deliver v.

* [Integrity] For any value v, every correct process delivers v at most once.
Moreover, if the sender pg is correct and the receiver is correct and in L, then

v was previously broadcast by ps.

» [Consistency] If a correct process in L delivers some value v and another
correct process in L delivers some value V', then v = V'

» [Totality] If a correct process in L delivers some value v, then all correct
processes in L eventually deliver some value.

36

Open questions

¢ Asymmetric threshold cryptography.
¢ Asymmetric leader-based consensus protocols.

¢ More composition rules.

¢ Byzantine consensus protocols in the permissionless setting.

37

Thank you!

UNIVERSITAT

38

Bibliography

UNIVERSITAT

¢ O. Alpos, C. Cachin, and L. Zanolini, “How to trust strangers: Composition of
byzantine quorum systems,” in SRDS 2021

¢ C. Cachin, G. Losa, and L. Zanolini, “Quorum systems in per- missionless
networks,” in OPODIS 2022

¢ C. Cachin and L. Zanolini, “Asymmetric asynchronous byzantine consensus,” in
CBT 2021 - ESORICS 2021

¢ C. Cachin and L. Zanolini, “Brief announcement: Revisiting signature-free
asynchronous byzantine consensus,” in DISC 2021

39

Asymmetric common coin

A protocol for asymmetric common coin satisfies the following properties: =

* [Termination] In all the executions with a guild, every process in the maximal
guild eventually outputs a coin value.

* [Unpredictability] In all the executions with a guild, no process has any
information about the value of the coin before at least a kernel for all wise
processes, which consists of correct processes, has released the coin.

« [Matching] In all the executions with a guild, with probability 1 every process
In the maximal guild outputs the same coin value.

* [No bias] The distribution of the coin is uniform over {0,1}.

40

Algorithm 2 Asymmetric common coin for round round (code for p;)

1: State

2: ‘H: set of all possible guilds
3: share[G][7]: if p; € G, this holds the share received from p;
4: for guild G; initially L

5. upon event release-coin do

6 for all G € ‘H such that p; € G do

7 let s;g be the share of p; for guild G

8 for all p, € P do

9 send message [SHARE, S;g, G, round] to p;

10: upon receiving a message [SHARE, s, G, r] from p; such that

11: r = round and p; € G do
12: if share[G][j] = L then
13: share|G][j] < s

14: upon exists G such that for all j with p; € G, it holds

15: share[G][j] # L do
16: S Ej:pjeg share[G][7]
17: output output-coin(s)

b

u

b
UNIVERSITAT
BERN

41

P,

Py

b

u

b
UNIVERSITAT
BERN

AUX, 1
;f' ")J#
o : >

VALUE, 0 51
0,5,
2131
4 VALUE, 1
>
VALUE, 1
VALUE, 0 AUX, 0 AUX, 1
v v £4 £4
@ L 2 @ .
VALUE, 1 A S A
PP, p,: VALUE, 0 P..P5.P,:
VALUE, 0 VALUE, 1
>
f+1 2f+1

42

b

u

b

UNIVERSITAT
BERN
+
‘A}JX, 1 Q}JX, 0 2f 1 release-coin
b \L
VALUE, 0 A P \/\« B={0,1}
PP P, PLPsP,: PLP5P,:
A VALUE, 1 VALUE, 0 AUX, 1; AUX, 0
»
VALUE, 1
VALUE, 0 AUX, 0 AUX, 1 release-coin
« v 4 k4
o K @ K >
VALUE, 1 VA A Va Va B={0,1}
/ / /
p11p4: p3: VALUE, 0 p2'p3'p4: p1'p3'p4:
VALUE, 0 VALUE, 1 AUX, 1; AUX, 0
>

2f+1

P,

P,

P;

P,

bv-broadcast(0)
«

*

N
/
e

e
output-coin(0)

bv-broadcast(0)
«

g
/X‘

output-éoin(O)

Random coin =0

b

u

b
UNIVERSITAT
BERN

44

P,

P;

P,

b

u

b
UNIVERSITAT
BERN

bv-broadcast(0)
) 4

>
N
output-coin(0) AUX, 1 release-coin bv-broadcast(1)
A b4 ‘,4
>
;:?‘ A 1B={1 A
bv-broadcast(0) p_,p..p,: P,.P,.P,: output-coin(0)
b VALUE, 1 AUX, 1
e >
Va

output-éoin(O)

Random coin =0

45

P

P;

Ps

b

u

b

AUX, 0 UNIVERSITAT

A

bv-broadcast(0 —
(0 B ={0,1}
@ >
N
output-éoin(O) AUX, 1 release-coin bv-broadcast(0)
< 2 4
./’ & ‘ >
//‘\;\'] / //\‘ - / /x
bv-broadcast(0) p,,p,,p,: P,.P,.P,: output-coin(0)
/4 VALUE, 1 AUX, 1
¥ >
/“‘
output-coin(0)
-

46

