UNIVERSITAT

Asymmetric Trust in
Distributed Systems

Luca Zanolini
University of Bern

Supervisor: Prof. Dr. Christian Cachin

6" July 2023



Secure distributed systems rely on trust
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¢ Specifies the failures that a system
can tolerate.

¢ Determines the conditions under
which a system operates correctly.

¢ Defined through a fail-prone
system.

¢ Fail-prone systems are useful tools
for the design of distributed -
algorithms.



Permissioned systems
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o P={p1, ..., pn}-
¢ Full system membership is public knowledge.
¢ Trust assumptions are public knowledge.

¢ Participants do not lie about their trust assumptions.



Generalized trust




Byzantine quorum systems
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o Set of processes P = {p1, ..., pn}-

+ Fail-prone system F < 2P : all processes in some F € F may fail together.
¢ Quorum system Q < 2P , where any Q € Q is a quorum, if and only if:
— Consistency:
VQ,QQeQVFeF: Qi NQyZF.
— Availability:
VFeF:3QeQ:FNnQ=4.

[Malkhi & Reiter, 1998]



Asymmetric trust

F1 F2 I:4




Asymmetric Byzantine quorum systems
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o Set of processes P = {p1, ..., pn}-
o Fail-prone systems F; = 2P for p.
¢ Quorum systems Q; < 2P |, where any Q; € Q; is a quorum for p; ,if and only if:
— Consistency:
V QeQ,V Qj S Qj, \v/ Fij e Fi*n Fj*Z Qi N Qj A Fij-
— Availability:
VFeF:3QeQ:FinQ=4.

[Cachin & Tackmann, 2019]



In the asymmetric trust model
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& Faulty: A process p; € F is called faulty
¢ Naive: A correct process p; for which F & F;* is called naive

¢ Wise: A correct process for which F € F;* is called wise
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Some of our results

¢ Better understanding of the relationship between wise and naive
processes.

¢ Uniqueness of the guild in an execution.

¢ Importance of a guild in kernel-based protocols, e.g., Bracha
broadcast.

& Tolerated system T= [P \G, for any possible guild G }

¢ Composition rule among asymmetric-trust based systems.
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Find a (deterministic) composition rule
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First asynchronous Byzantine consensus
protocol with asymmetric trust

¢ |t uses randomization

¢ Signature-free

¢ Round-based

¢ Suitable for applications in blockchain networks

¢ Builds on the protocol by Mostéfaoui et al. (PODC 2014)

Signature-Free Asynchronous Byzantine Consensus
with ¢ < n/3 and O(»?) Messages

Achour Mostéfaoui Hamouma Moumen Michel Raynal

LINA, Université de Nantes University of Bejaia Institut Universitaire de France
44322 Nantes, France Bejaia, Algeria & IRISA, Université de Rennes
Achour.Mostefaoui@univ- moumenh@gmail.com raynal@irisa.fr
nantes.fr
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The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b)

UNIVERSITAT

13



The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b)
2f+1
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The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all
2f+1
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The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all — b received
2f+1 2f+1
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The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all — b received — release-coin
2f+1 2f+1
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The (original) protocol

I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all — b received — release-coin — output-coin(s)
2f+1 2f+1
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The (original) protocol
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I.Binary validated broadcast

II.Randomized consensus
— Uses a common coin

bv-broadcast(b) — bv-deliver(b) — [AUX,b] to all — b received — release-coin — output-coin(s) — if b = s, rbc-decide(b)
2f+1 2f+1 if b # s, bv-broadcast(b)
if {0,1}, bv-broadcast(s)

A

B
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Liveness issue!

The network reorders messages between correct processes and delays them
until the coin value becomes known.
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Fixing the problem
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i. FIFO ordering on the reliable point-to-point links, including the messages
exchanged by the coin implementation

+ the adversary may no longer exploit its knowledge of the coin value to
prevent termination.

ii. Allow the set B to dynamically change while the coin protocol executes.

iii. Our protocol does not execute rounds forever, as in the original formulation.

21



The (asymmetric) protocol
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I.LAsymmetric binary validated broadcast

. Asymmetric randomized consensus
— Uses an asymmetric common coin

abv-broadcast(b) — abv-deliver(b) — [AUX,b] to all — b received — release-coin — output-coin(s) — if b = s, arbc-decide(b)

Q,‘ Qi
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Asymmetric strong Byzantine consensus
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In all executions with a guild:

¢ [Probabilistic termination] Every wise process decides with probability 1.

¢ [Strong validity] A wise process only decides a value that has been
proposed by some processes in the maximal guild.

¢ [Integrity] No correct process decides twice.

¢ [Agreement] No two wise processes decide differently.
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Permissionless systems

¢ P-= {p1, P2 ,}
¢ Knowledge of the full system membership is not available.
¢ Trust assumptions are (partially) public knowledge.

< Participants can lie about their trust assumptions.
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Our model

¢ Each process p; makes assumptions about a set Pi < P = {p1, p2,...}
called p;i's trusted set, using a fail-prone system F; over P; .

¢ Point-to-point communication & best-effort gossip primitive.

¢ Each process p; continuously discovers new processes and learns
their assumptions.

¢ A permissionless fail-prone system is an array:

F=[(P1 F1),(P2 F2),..., ]

UNIVERSITAT
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Assumptions of p;
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We say that the assumptions of a process p; are satisfied in an execution if the set
A of processes that fail is such that there exists a fail-prone set F € F; such that:

i.ANP;c F;

ii.the assumptions of every member of P;\ F are satisfied.
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Assumptions of p; —

We say that the assumptions of a process p; are satisfied in an execution if the set
A of processes that fail is such that there exists a fail-prone set F € F; such that:

i.ANP;c F;
ii.the assumptions of every member of P;\ F are satisfied.

If p; has its assumptions satisfied in an execution, we say that p; tolerates the
execution.

A set of processes L tolerates a set of processes A if and only if every process p;

in L \ A tolerates an execution with set of faulty processes A.
27



A new Kkind of failure assumptions
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A participant's assumption are not only about failures, but also about whether other
participants make correct assumptions.
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A new Kkind of failure assumptions
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A participant's assumption are not only about failures, but also about whether other
participants make correct assumptions.

How do we define quorums??

¢ Global intersection property among quorums?

¢ Malicious processes can lie about their assumptions.
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Views

A view V = [V4,V3, ... | is an array with one entry V[j] = V; for each procengE)i such
that:

i. either V; is the special value - ; or
ii. Vj = (Pj F;) consists of a set of processes Pj and a fail-prone system F;.

A process p; 's view is what pj thinks other's assumptions are. However, such view
might contain lies from Byzantine processes.
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Views

A view V = [V4,V3, ... | is an array with one entry V[j] = V; for each procengE)i such
that:

i. either V; is the special value - ; or
ii. Vj = (Pj F;) consists of a set of processes Pj and a fail-prone system F;.

A process p; 's view is what pj thinks other's assumptions are. However, such view
might contain lies from Byzantine processes.

Given a set of faulty processes A in an execution, we say that a view V is
A-resilient if and only if for every process p; & A, either V[i] = - or V[i] = Fil.
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Quorum function u
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A quorum is a set of processes that satisfies the assumptions of every onechJf its
members.
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Quorum function
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A quorum is a set of processes that satisfies the assumptions of every onem;)f its
members.

The quorum function Q : P x V -> 2P maps a process p;and a view V to a set of
processes such that Q € Q (pj V) if and only if:

i. there exists F € F;for pjsuchthat P\ F < Q;
ii.for every process p; # pj € Q with V[i] # L and Vj = (Pj Fj), there exists F € F;
for pjsuch that P\ F < Q.

Every elementof Q € Q (p;, V) is called a permissionless quorum for p;.

33
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Leagues u
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A league is a set of processes that enjoys quorum intersection and quorw;;m
availability in all executions that it tolerates.
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Leagues
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A league is a set of processes that enjoys quorum intersection and quorunB;RN
availability in all executions that it tolerates.

A set of processes L is a league for the quorum function Q  if and only if:

i. Consistency: for every set A € P tolerated by L, for every two A-resilient
views V and V', for every two processes p; and p; € L \ A, and for every

two quorums Q; € Q (p;, V) and Qj € Q (pi V') itholds (Qj N Qj) \ A# O

ii. Availability: for every set A = P tolerated by L and for every process p; €
L \ A, there exists a quorum Q; € Q (pj F) suchthat Q; = L\A.

35



Permissionless Byz. reliable broadcast

For every league L and every execution tolerated by L:

- [Validity] If a correct process pg broadcasts a value v, the all correct
processes in L eventually deliver v.

* [Integrity] For any value v, every correct process delivers v at most once.
Moreover, if the sender pg is correct and the receiver is correct and in L, then

v was previously broadcast by ps.

» [Consistency] If a correct process in L delivers some value v and another
correct process in L delivers some value V', then v = V'

» [Totality] If a correct process in L delivers some value v, then all correct
processes in L eventually deliver some value.
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Open questions

¢ Asymmetric threshold cryptography.
¢ Asymmetric leader-based consensus protocols.

¢ More composition rules.

¢ Byzantine consensus protocols in the permissionless setting.
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Thank you!
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Asymmetric common coin

A protocol for asymmetric common coin satisfies the following properties: =

* [Termination] In all the executions with a guild, every process in the maximal
guild eventually outputs a coin value.

* [Unpredictability] In all the executions with a guild, no process has any
information about the value of the coin before at least a kernel for all wise
processes, which consists of correct processes, has released the coin.

« [Matching] In all the executions with a guild, with probability 1 every process
In the maximal guild outputs the same coin value.

* [No bias] The distribution of the coin is uniform over {0,1}.
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Algorithm 2 Asymmetric common coin for round round (code for p;)

1: State

2: ‘H: set of all possible guilds
3: share[G][7]: if p; € G, this holds the share received from p;
4: for guild G; initially L

5. upon event release-coin do

6 for all G € ‘H such that p; € G do

7 let s;g be the share of p; for guild G

8 for all p, € P do

9 send message [SHARE, S;g, G, round] to p;

10: upon receiving a message [SHARE, s, G, r] from p; such that

11: r = round and p; € G do
12: if share[G][j] = L then
13: share|G][j] < s

14: upon exists G such that for all j with p; € G, it holds

15: share[G][j] # L do
16: S Ej:pjeg share[G][7]
17: output output-coin(s)

b

u
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