
Asymmetric Trust in

Distributed Systems

Luca Zanolini
University of Bern

Supervisor: Prof. Dr. Christian Cachin

6th July 2023

 2

Secure distributed systems rely on trust

 Specifies the failures that a system
can tolerate.

 Determines the conditions under
which a system operates correctly.

 Defined through a fail-prone
system.

 Fail-prone systems are useful tools
for the design of distributed
algorithms.

 3

Permissioned systems

 P = {p1, ..., pn}.

 Full system membership is public knowledge.

 Trust assumptions are public knowledge.

 Participants do not lie about their trust assumptions.

 4

Generalized trust

F

F

FF

 5

Byzantine quorum systems

 Set of processes P = {p1, ..., pn}.

 Fail-prone system F ⊆ 2P : all processes in some F ∈ F may fail together.

 Quorum system Q ⊆ 2P , where any Q ∈ Q is a quorum, if and only if:

– Consistency:
∀ Q1, Q2 ∈ Q, ∀ F ∈ F : Q1 ∩ Q2 ⊈ F.

– Availability:
∀ F ∈ F : ∃ Q ∈ Q : F ∩ Q = ∅.

[Malkhi & Reiter, 1998]

 6

Asymmetric trust

F2

F3

F4F1

 7

Asymmetric Byzantine quorum systems

 Set of processes P = {p1, ..., pn}.

 Fail-prone systems Fi ⊆ 2P for pi.

 Quorum systems Qi ⊆ 2P , where any Qi ∈ Qi is a quorum for pi ,if and only if:

– Consistency:
∀ Qi ∈ Qi, ∀ Qj ∈ Qj, ∀ Fij ∈ Fi*∩ Fj*: Qi ∩ Qj ⊈ Fij.

– Availability:
∀ Fi ∈ Fi : ∃ Qi ∈ Qi : Fi ∩ Qi = ∅.

[Cachin & Tackmann, 2019]

 8

�

�

�

In the asymmetric trust model

 Faulty: A process pi ∈ F is called faulty

 Naive: A correct process pi for which F ∉ Fi* is called naive

 Wise: A correct process for which F ∈ Fi* is called wise

 9

} G
Guild

 10

 Better understanding of the relationship between wise and naive
processes.

 Uniqueness of the guild in an execution.

 Importance of a guild in kernel-based protocols, e.g., Bracha
broadcast.

 Tolerated system

 Composition rule among asymmetric-trust based systems.

Some of our results

T= {P \ G, for any possible guild G }

 11

Find a (deterministic) composition rule

F1

F2

F3

F4 F5
F5

F6

F7

F8

F9

[F1,F2,F3,F4,F5,F6,F7,F8,F9]

 12

First asynchronous Byzantine consensus
protocol with asymmetric trust

 It uses randomization
 Signature-free
 Round-based
 Suitable for applications in blockchain networks
 Builds on the protocol by Mostéfaoui et al. (PODC 2014)

 13

i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b)

The (original) protocol

 14

i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) → bv-deliver(b)
 2f+1

The (original) protocol

 15

i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) → bv-deliver(b) → [AUX,b] to all
 2f+1

The (original) protocol

 16

i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) → bv-deliver(b) → [AUX,b] to all → b received
 2f+1 2f+1

The (original) protocol

 17

i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) → bv-deliver(b) → [AUX,b] to all → b received → release-coin
 2f+1 2f+1

The (original) protocol

 18

i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) → bv-deliver(b) → [AUX,b] to all → b received → release-coin → output-coin(s)
 2f+1 2f+1

The (original) protocol

 19

i.Binary validated broadcast
ii.Randomized consensus

– Uses a common coin

bv-broadcast(b) → bv-deliver(b) → [AUX,b] to all → b received → release-coin → output-coin(s) → if b = s, rbc-decide(b)
 2f+1 2f+1 if b ≠ s, bv-broadcast(b)
 if {0,1}, bv-broadcast(s)

The (original) protocol

B

 20

Liveness issue!

The network reorders messages between correct processes and delays them
until the coin value becomes known.

 21

Fixing the problem

i. FIFO ordering on the reliable point-to-point links, including the messages
exchanged by the coin implementation

 the adversary may no longer exploit its knowledge of the coin value to
prevent termination.

ii. Allow the set B to dynamically change while the coin protocol executes.

iii. Our protocol does not execute rounds forever, as in the original formulation.

 22

The (asymmetric) protocol

i.Asymmetric binary validated broadcast
ii.Asymmetric randomized consensus

– Uses an asymmetric common coin

abv-broadcast(b) → abv-deliver(b) → [AUX,b] to all → b received → release-coin → output-coin(s) → if b = s, arbc-decide(b)

 Qi Qi

 23

Asymmetric strong Byzantine consensus
In all executions with a guild:

 [Probabilistic termination] Every wise process decides with probability 1.

 [Strong validity] A wise process only decides a value that has been
proposed by some processes in the maximal guild.

 [Integrity] No correct process decides twice.

 [Agreement] No two wise processes decide differently.

 24

Permissionless systems

 P = {p1, p2 ,...}.

 Knowledge of the full system membership ﻿is not available.

 Trust assumptions are (partially) public knowledge.

 Participants can lie about their trust assumptions.

 25

 Each process pi makes assumptions about a set Pi ⊆ P = {p1, p2 ,...}
called pi's trusted set, using a fail-prone system Fi over Pi .

 Point-to-point communication & best-effort gossip primitive.

 Each process pi continuously discovers new processes and learns
their assumptions.

 A permissionless fail-prone system is an array:

 F = [(P1 ,F1),(P2 ,F2),...,]

Our model

 26

We say that the assumptions of a process pi are satisfied in an execution if the set
A of processes that fail is such that there exists a fail-prone set F ∈ Fi such that:

i. A ∩ Pi ⊆ F;

ii.the assumptions of every member of Pi \ F are satisfied.

Assumptions of pi

 27

We say that the assumptions of a process pi are satisfied in an execution if the set
A of processes that fail is such that there exists a fail-prone set F ∈ Fi such that:

i. A ∩ Pi ⊆ F;

ii.the assumptions of every member of Pi \ F are satisfied.

If pi has its assumptions satisfied in an execution, we say that pi tolerates the
execution.

A set of processes L tolerates a set of processes A if and only if every process pi
in L \ A tolerates an execution with set of faulty processes A.

Assumptions of pi

 28

A new kind of failure assumptions

A participant's assumption are not only about failures, but also about whether other
participants make correct assumptions.

 29

A new kind of failure assumptions

A participant's assumption are not only about failures, but also about whether other
participants make correct assumptions.

How do we define quorums?

 Global intersection property among quorums?

 Malicious processes can lie about their assumptions.

 30

Views

A view V = [V1,V2, ...] is an array with one entry V[j] = Vj for each process pi such

that:

i. either Vj is the special value ┴ ; or
ii. Vj = (Pj ,Fj) consists of a set of processes Pj and a fail-prone system Fj.

A process pi 's view is what pi thinks other's assumptions are. However, such view
might contain lies from Byzantine processes.

 31

Views

A view V = [V1,V2, ...] is an array with one entry V[j] = Vj for each process pi such

that:

i. either Vj is the special value ┴ ; or
ii. Vj = (Pj ,Fj) consists of a set of processes Pj and a fail-prone system Fj.

A process pi 's view is what pi thinks other's assumptions are. However, such view
might contain lies from Byzantine processes.

Given a set of faulty processes A in an execution, we say that a view V is

A-resilient if and only if for every process pi ∉ A, either V[i] = ┴ or V[i] = F[i].

 32

Quorum function

A quorum is a set of processes that satisfies the assumptions of every one of its
members.

 33

Quorum function

A quorum is a set of processes that satisfies the assumptions of every one of its
members.

The quorum function Q : P x V -> 2P maps a process pi and a view V to a set of

processes such that Q ∈ Q (pi , V) if and only if:

i. there exists F ∈ Fi for pi such that Pi \ F ⊆ Q;
ii.for every process pj ≠ pi ∈ Q with V[i] ≠ ┴ and Vj = (Pj ,Fj), there exists F ∈ Fj

for pj such that Pj \ F ⊆ Q.

Every element of Q ∈ Q (pi , V) is called a permissionless quorum for pi.

 34

Leagues

A league is a set of processes that enjoys quorum intersection and quorum
availability in all executions that it tolerates.

 35

Leagues

A league is a set of processes that enjoys quorum intersection and quorum
availability in all executions that it tolerates.

A set of processes L is a league for the quorum function Q if and only if:

i. Consistency: for every set A ⊆ P tolerated by L, for every two A-resilient

views V and V', for every two processes pi and pj ∈ L \ A, and for every

two quorums Qi ∈ Q (pi , V) and Qj ∈ Q (pi , V') it holds (Qi ∩ Qj) \ A ≠ ∅;

ii. Availability: for every set A ⊆ P tolerated by L and for every process pi ∈

L \ A, there exists a quorum Qi ∈ Q (pi , F) such that Qi ⊆ L \ A.

 36

Permissionless Byz. reliable broadcast
For every league L and every execution tolerated by L:

• [Validity] If a correct process ps broadcasts a value v, the all correct
processes in L eventually deliver v.

• [Integrity] For any value v, every correct process delivers v at most once.
Moreover, if the sender ps is correct and the receiver is correct and in L, then
v was previously broadcast by ps.

• [Consistency] If a correct process in L delivers some value v and another
correct process in L delivers some value v', then v = v'.

• [Totality] If a correct process in L delivers some value v, then all correct
processes in L eventually deliver some value.

 37

 Asymmetric threshold cryptography.

 Asymmetric leader-based consensus protocols.

 More composition rules.

 Byzantine consensus protocols in the permissionless setting.

Open questions

 38

Thank you!

 39

Bibliography

 O. Alpos, C. Cachin, and L. Zanolini, “How to trust strangers: Composition of
byzantine quorum systems,” in SRDS 2021

 C. Cachin, G. Losa, and L. Zanolini, “Quorum systems in per- missionless
networks,” in OPODIS 2022

 C. Cachin and L. Zanolini, “Asymmetric asynchronous byzantine consensus,” in
CBT 2021 - ESORICS 2021

 C. Cachin and L. Zanolini, “Brief announcement: Revisiting signature-free
asynchronous byzantine consensus,” in DISC 2021

 40

Asymmetric common coin
A protocol for asymmetric common coin satisfies the following properties:

• [Termination] In all the executions with a guild, every process in the maximal
guild eventually outputs a coin value.

• [Unpredictability] In all the executions with a guild, no process has any
information about the value of the coin before at least a kernel for all wise
processes, which consists of correct processes, has released the coin.

• [Matching] In all the executions with a guild, with probability 1 every process
in the maximal guild outputs the same coin value.

• [No bias] The distribution of the coin is uniform over {0,1}.

 41

 42

f+1 2f+1

 43

2f+1

2f+1

 44

Random coin = 0

 45

Random coin = 0

 46

AUX, 0 ...

B = {0,1}

